Indestructibility of the tree property

Šárka Stejskalová

Charles University, Faculty of Arts (FF UK), Department of Logic logika.ff.cuni.cz/sarka

Hejnice January 30, 2019 Recall the following definition:

Definition

Let κ be a regular cardinal. A κ -tree is called *Aronszajn* if it has no cofinal branch. The tree property holds at κ if there are no κ -Aronszajn trees.

Recall the following definition:

Definition

Let κ be a regular cardinal. A κ -tree is called *Aronszajn* if it has no cofinal branch. The tree property holds at κ if there are no κ -Aronszajn trees.

The tree property is a compactness property which has been recently extensively studied. In order to construct models with the tree property, it is helpful to try to understand which forcings cannot create new κ -Aronszajn trees (we say that the tree property is *indestructible* by these forcings).

In this talk, we will discuss primarily the indestructibility over the Mitchell model $V[\mathbb{M}(\omega, \kappa)]$ in which the tree property holds at $\omega_2 = \kappa$ with $2^{\omega} = \omega_2$. We assume that κ is supercompact in V.

In this talk, we will discuss primarily the indestructibility over the Mitchell model $V[\mathbb{M}(\omega, \kappa)]$ in which the tree property holds at $\omega_2 = \kappa$ with $2^{\omega} = \omega_2$. We assume that κ is supercompact in V.

Let us write $\mathbb{M} = \mathbb{M}(\omega, \kappa)$. We will not define \mathbb{M} . For our purposes it suffices to say that there are projections

 $\mathsf{Add}(\omega,\kappa) \times \mathbb{T} \to_{\mathsf{onto}} \mathbb{M} \to_{\mathsf{onto}} \mathsf{Add}(\omega,\kappa)$

for some ω_1 -closed forcing \mathbb{T} (the term forcing),

In this talk, we will discuss primarily the indestructibility over the Mitchell model $V[\mathbb{M}(\omega, \kappa)]$ in which the tree property holds at $\omega_2 = \kappa$ with $2^{\omega} = \omega_2$. We assume that κ is supercompact in V.

Let us write $\mathbb{M} = \mathbb{M}(\omega, \kappa)$. We will not define \mathbb{M} . For our purposes it suffices to say that there are projections

$$\mathsf{Add}(\omega,\kappa) \times \mathbb{T} \to_{\mathsf{onto}} \mathbb{M} \to_{\mathsf{onto}} \mathsf{Add}(\omega,\kappa)$$

for some ω_1 -closed forcing \mathbb{T} (the term forcing),and that if $\alpha < \kappa$ is inaccessible, then in $V[\mathbb{M}_{\alpha}]$ there are projections

$$\mathsf{Add}(\omega,\kappa) \times \mathbb{T}_{\alpha} \to_{\mathsf{onto}} \mathbb{M}/\mathbb{M}_{\alpha} \to_{\mathsf{onto}} \mathsf{Add}(\omega,\kappa)$$

where \mathbb{M}_{α} is regularly embedded into \mathbb{M} as its "initial segment" and \mathbb{T}_{α} is ω_1 -closed in $V[\mathbb{M}_{\alpha}]$.

The product analysis on the previous slide and the so called branch lemmas imply (using a standard method which we will omit here) the tree property at ω_2 . For clarity we state the lemmas just for the specific case of ω_2 .

The product analysis on the previous slide and the so called branch lemmas imply (using a standard method which we will omit here) the tree property at ω_2 . For clarity we state the lemmas just for the specific case of ω_2 .

 (Folkore) Assume that P is a ccc forcing notion. Then P does not add cofinal branches to ω₂-Aronszajn trees. The product analysis on the previous slide and the so called branch lemmas imply (using a standard method which we will omit here) the tree property at ω_2 . For clarity we state the lemmas just for the specific case of ω_2 .

- (Folkore) Assume that P is a ccc forcing notion. Then P does not add cofinal branches to ω₂-Aronszajn trees.
- (Unger) Suppose $2^{\omega} \ge \omega_2$. Assume that P and Q are forcing notions such that P is **ccc** and Q is ω_1 -**closed**. If T is a ω_2 -tree in V[P], then forcing with Q over V[P] does not add cofinal branches to T.

Remark. Earlier arguments for the tree property were based on Silver's lemma¹ and require in our specific case a stronger property of ω_1 -square-cc for P.² Unger's result strengthens Silver's lemma and consequently weakens the assumption required for P to ccc. This is not important for Add(ω, κ) (which is even ω_1 -Knaster) but becomes important if we wish to consider arbitrary ccc forcings for the indestructibility results.

 $^12^\omega \geq \omega_2$ implies that $\omega_1\text{-closed}$ forcings do not add cofinal branches to $\omega_2\text{-trees}$

²*P* is ω_1 -square-cc iff *P* × *P* is ccc

Let us discuss the following result:

```
Theorem (Honzik, S. (2019))
```

Suppose κ is supercompact. The tree property at ω_2 in $V[\mathbb{M}]$ is indestructible by all ccc forcings which live in $V[\operatorname{Add}(\omega, \kappa)]$.

Let us discuss the following result:

```
Theorem (Honzik, S. (2019))
```

Suppose κ is supercompact. The tree property at ω_2 in $V[\mathbb{M}]$ is indestructible by all ccc forcings which live in $V[\operatorname{Add}(\omega, \kappa)]$.

First notice that $V[Add(\omega, \kappa)] \subseteq V[\mathbb{M}]$ so the statement of the theorem makes sense.

Let us discuss the following result:

Theorem (Honzik, S. (2019))

Suppose κ is supercompact. The tree property at ω_2 in $V[\mathbb{M}]$ is indestructible by all ccc forcings which live in $V[\operatorname{Add}(\omega, \kappa)]$.

First notice that $V[Add(\omega, \kappa)] \subseteq V[\mathbb{M}]$ so the statement of the theorem makes sense.

Let us repeat that we require just ccc and not a stronger form of ccc such as ω_1 -Knaster or "square-ccc", which is often required.

 Choose a supercompact embedding j : V → M with critical point κ so that M is closed under sequences of size |M * Q|.

- Choose a supercompact embedding $j: V \to M$ with critical point κ so that M is closed under sequences of size $|\mathbb{M} * \dot{\mathbb{Q}}|$.
- j restricted to $\mathbb{M} * \dot{\mathbb{Q}}$ is a regular embedding into $j(\mathbb{M} * \dot{\mathbb{Q}})$ due to $\mathbb{M} * \dot{\mathbb{Q}}$ being κ -cc, and one can therefore lift to $j : V[\mathbb{M} * \dot{\mathbb{Q}}] \to M[j(\mathbb{M} * \dot{\mathbb{Q}})].$

- Choose a supercompact embedding $j: V \to M$ with critical point κ so that M is closed under sequences of size $|\mathbb{M} * \dot{\mathbb{Q}}|$.
- *j* restricted to M * Q̇ is a regular embedding into *j*(M * Q̇) due to M * Q̇ being κ-cc, and one can therefore lift to *j* : V[M * Q̇] → M[*j*(M * Q̇)].
- Since *M* is closed under sequences of size |M ∗ Q|, the regular embedding is an element of *M*, and it follows that *M*[*j*(M ∗ Q)] can be written as *M*[M ∗ Q ∗ Q] for some forcing Q.

• Over $M[\mathbb{M} * \dot{\mathbb{Q}}]$ there is a projection from the product

$$j(\operatorname{\mathsf{Add}}(\omega,\kappa)\ast\dot{\mathbb{Q}})/(\operatorname{\mathsf{Add}}(\omega,\kappa)\ast\dot{\mathbb{Q}})\ \times\ \mathbb{T}_{\kappa}$$

onto \dot{Q} , where the first component of the product is ccc in $M[\mathbb{M} * \dot{\mathbb{Q}}]$ and \mathbb{T}_{κ} is ω_1 -closed in $M[\mathbb{M}]$.

• Over $M[\mathbb{M} * \mathbb{Q}]$ there is a projection from the product

 $j(\operatorname{Add}(\omega,\kappa) * \dot{\mathbb{Q}}) / (\operatorname{Add}(\omega,\kappa) * \dot{\mathbb{Q}}) \times \mathbb{T}_{\kappa}$

onto \dot{Q} , where the first component of the product is ccc in $M[\mathbb{M} * \dot{\mathbb{Q}}]$ and \mathbb{T}_{κ} is ω_1 -closed in $M[\mathbb{M}]$.

• The argument can be finished by the standard method using the fact that a ccc forcing cannot add a cofinal branch to an ω_2 -Aronszajn tree, and neither can an ω_1 -closed forcing over a ccc forcing. The theorem can be generalized by using a more complex forcing $\mathbb R$ (with similar properties as $\mathbb M)$ which yields the following:

Theorem (Honzik, S. (2019))

Suppose κ is supercompact. There is a forcing \mathbb{R} such that over $V[\mathbb{R}]$ the tree property at $\omega_2 = \kappa$ is indestructible by all these forcings:

- ccc forcings living in $V[Add(\omega, \kappa)]$.
- ω_1 -closed, ω_2 -cc forcings.

ω₂-directed closed forcings.

• ω_1 -cc or ω_1 -distrubutive forcings of size ω_1 .

Some applications. The theorem generalizes to other cardinals: one can show that if $\kappa < \lambda$ are regular and λ supercompact, then all κ^+ -cc forcings living in $V[\operatorname{Add}(\kappa, \lambda)]$ preserve the tree property at $\lambda = \kappa^{++V[\mathbb{M}(\kappa,\lambda)]}$. With the additional assumption that κ is Laver-indestructible supercompact: **Some applications.** The theorem generalizes to other cardinals: one can show that if $\kappa < \lambda$ are regular and λ supercompact, then all κ^+ -cc forcings living in $V[\operatorname{Add}(\kappa, \lambda)]$ preserve the tree property at $\lambda = \kappa^{++V[\mathbb{M}(\kappa,\lambda)]}$. With the additional assumption that κ is Laver-indestructible supercompact:

M(κ, λ) * Prk^{V[Add(κ,λ)]} forces the tree property at the double successor of a singular strong limit cardinal with countable cofinality, where Prk^M denotes the vanilla Prikry forcing defined in a model M.

Some applications. The theorem generalizes to other cardinals: one can show that if $\kappa < \lambda$ are regular and λ supercompact, then all κ^+ -cc forcings living in $V[\operatorname{Add}(\kappa, \lambda)]$ preserve the tree property at $\lambda = \kappa^{++V[\mathbb{M}(\kappa,\lambda)]}$. With the additional assumption that κ is Laver-indestructible supercompact:

- M(κ, λ) * Prk^{V[Add(κ,λ)]} forces the tree property at the double successor of a singular strong limit cardinal with countable cofinality, where Prk^M denotes the vanilla Prikry forcing defined in a model M.
- M(κ, λ) * (Add(κ, δ) * Prk^{V[Add(κ,δ)]}) forces the tree property at the double successor of a singular strong limit cardinal with countable cofinality, while making 2^κ arbitrarily large (by choosing a large enough δ).

 M(κ, λ) * (Add(κ, δ) * Mag^{V[Add(κ,δ)]}) forces the tree property at the double successor of a singular strong limit cardinal with an arbitrary cofinality ω < μ < κ, while making 2^κ arbitrarily large, where Mag^M is the Magidor forcing in M defined with respect to a sequence of measures of length μ.

- M(κ, λ) * (Add(κ, δ) * Mag^{V[Add(κ,δ)]}) forces the tree property at the double successor of a singular strong limit cardinal with an arbitrary cofinality ω < μ < κ, while making 2^κ arbitrarily large, where Mag^M is the Magidor forcing in M defined with respect to a sequence of measures of length μ.
- There are applications for cardinal invariants (for instance to the ultrafilter number on κ because all subsets of κ added by M(κ, λ) are added already by Add(κ, λ)).

Open questions. Let us mention just one important question:

Q1. Is the tree property indestructible over $V[\mathbb{M}]$ by all ccc forcings \mathbb{Q} living in $V[\mathbb{M}]$? Or more generally, by all κ^+ -cc forcings \mathbb{Q} living in $V[\mathbb{M}(\kappa, \lambda)]$ (κ can be measurable now)?

Open questions. Let us mention just one important question:

Q1. Is the tree property indestructible over $V[\mathbb{M}]$ by all ccc forcings \mathbb{Q} living in $V[\mathbb{M}]$? Or more generally, by all κ^+ -cc forcings \mathbb{Q} living in $V[\mathbb{M}(\kappa, \lambda)]$ (κ can be measurable now)?

Notice that our proof relies heavily on the product analysis which uses the fact that $Add(\kappa, \lambda) * \dot{\mathbb{Q}}$ is meaningful (and κ^+ -cc). This cannot be done if \mathbb{Q} lives in $V[\mathbb{M}(\kappa, \lambda)]$.